
CSCI-564
CONSTRAINT PROCESSING AND
HEURISTIC SEARCH

Dr. Jean-Alexis Delamer

DEPARTMENT OF COMPUTER SCIENCE

L E C T U R E 1 3 – S TAT E S PA C E P R U N I N G (C O N T I N U E D)

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Pruning is a technique to ignore parts of the search tree (and thus reduce the
branching factor) to save runtime and memory.

• Pruning requires runtime and memory. We need to ensure that the costs are
outweighed by the corresponding savings.

• Pruning exploit the expert knowledge of the domain.
• Regularities.

• The pruning can be static or dynamic.

Recap

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Static and dynamic pruning give optimal solutions.
• The pruning algorithm needs to verify before pruning that the branch is not

leading to an optimal solution.
• In large state space, pruning techniques does not reduce the time complexity

enough.
What can we do?

State Space Pruning

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• We can sacrifice the optimality of the solution.
• Sometimes a good, but quick solution is better.

• Example (GPS).
• On small distances, you can calculate the optimal solution very fast.
• But calculating the optimal path between Antigonish and San Francisco can be very long.
• However, you only want a good solution not the optimal.

• What is 1 hour on a 3-day travel.

Nonadmissible State Space Pruning

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• The pruning technique that sacrifice the optimality are nonadmissible.

• We will see two techniques:
• Macro problem solving
• Relevance cut

Nonadmissible State Space Pruning

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• The idea is to group a sequence of actions into a new action.
• Ex: 4x turn 90° can be grouped into turn 360°.

• The problem solver (algorithm) can apply multiple primitive operators at once.

• Where is the pruning?
• Requires fewer decisions.
• Choices inside a branch are ignored.

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Is there a catch?
• If the substitutions operators are too generous (grouping to many primitive operators) the

goal might not be found.

• We need to ensure that the goal is still reachable.

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Definition (Macro Operator):
• A macro operator (macro) is a fixed sequence of elementary operators executed together.
• For a problem graph with node set 𝑉 and an edge set 𝐸.
• A macro refers to an additional edge 𝑒 = (𝑢, 𝑣) in 𝑉×𝑉 for which there are edges 𝑒! =
𝑢!, 𝑣! , … , 𝑒" = 𝑢", 𝑣" ∈ 𝐸 with 𝑢 = 𝑢!, 𝑣 = 𝑣" and 𝑣# = 𝑢#$!for all 1 ≤ 𝑖 ≤ 𝑘 − 1.

• In other words, the path (𝑢!, … , 𝑢", 𝑣") between 𝑢 and 𝑣 is shortcut by
introducing 𝑒.

Macro Problem Solving

𝑢! 𝑢" 𝑣"

𝑒

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Macros turn an unweighted graph into a weighted graph.
• Why?

• Macros can have different lengths.
• We need to know the weight of a macro to find the best solution.

• The weight of the macro is the accumulated weight of the original edges:
• 𝑤 𝑢, 𝑣 = ∑#%!" 𝑤(𝑢#, 𝑣#)

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Inserting edges does not affect the reachability status of nodes.
• If there is no alternative in the choice of successors.

• 𝑆𝑢𝑐𝑐 𝑢# = {𝑣#}
• Macros can substitute the original edges without loss of information.

• Example:
• Maze areas with width of one (tunnel).

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• If there are more paths between a node?
• To preserve the optimality of an underlying search algorithm.

• We take the shortest path 𝑤 𝑢, 𝑣 = 𝛿(𝑢, 𝑣).

• These macros are called admissible.

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• How can we create the macros?
• The All-Pairs Shortest Paths algorithm of Floyd-Warshall is one way.
• At the end of the algorithm, all two nodes are connected.
• The original edges are no longer needed to determine the shortest path.
• It keeps the optimality of the search.

• So we can find the optimal solution with macros?

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• True, for small problems.
• For larger problems computing All-Pairs Shortest Paths is infeasible.
• If we accept feasible solutions:

• We can use inadmissible macros.
• Delete edges after some admissible macros have been introduced.

• The importance of macros is that they can be determined before the search.
• It’s called Macro learning.

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• How to use inadmissible macros:
• Inserting them with a weight 𝑤(𝑢, 𝑣) smaller than the optimum 𝛿(𝑢, 𝑣) .

• The macros will be used with higher priority.
• Or we can restrict the search to macros only.

• Only possible if the goal stay reachable.

• Creating inadmissible macros depends on the problem.

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Example:
• We decompose the problem in subgoals.
• For each subgoals a set of macros is defined that transform a state into the next subgoal.

Macro Problem Solving

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Actions are labeled by the direction in which the blank is moving.
• We create a table:

• The entry in row 𝑟 and in the column 𝑐 contains a macro.
• The macro is the sequence to position the tile in position 𝑟 to the position 𝑐.
• After execution the tiles in position 1 to 𝑟 − 1 remain correctly placed.

Eight-Puzzle

1 2 3
48

7 6 5

6 1 3
78

2 5
4

Starting state Goal state

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

Eight-Puzzle

6 1 3
78

2 5
4

c=0, r=5

1 2 3
48

7 6 5

Goal state

6 1 3

7
8
2 5

4
U

6 1 3

7
8
2 5

4
L

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

Eight-Puzzle

1 2 3
48

7 6 5

Goal state

6 1 3

7
8
2 5

4

c=1, r=2

Do you see a pattern?

6 1 3

7
8

2 5
4 6

1 3

7
8

2 5
4 6

1 3

7
8

2 5
4

L U R

6
1 3

7

8

2 5
4

D

The tiles in the correct position didn’t move.

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

Eight-Puzzle

6
1 3

7

8

2 5
4

c=2, r=7

6
1 3

7
8

2 5
4

U
6

3

7
8

2 5
4

1

L

6 3

7
8

2 5
4

1

D

6 3

7
82
5

4
1

D

6 3

7
82

5
4

1

R

6 3

78
2
5

4
1

U
6 3

78
2

5
4

1
L

6
3

78
2

5
4

1

U

6
3

78
2

5
4

1

R
6

3

78

2

5
4

1

D
D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

Eight-Puzzle

6
3

78

2

5
4

1
The tiles 3 and 4 are in the correct positions.
We can skip it.

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

Eight-Puzzle

6
3

78

2

5
4

1

c=5, r=7

7
3

58

2

6
4

1
DRULDL

URRDLU

The tiles in the correct positions don’t move.

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

Eight-Puzzle

7
3

58

2

6
4

1

c=6, r=7

8
3

56

2

7
4

1
DLUR

It’s done.

Was it optimal?

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• In the worst-case scenario:
• We sum the string size maxima in the columns.
• 2+12+10+14+8+14+4=64

• The average solution length:
• We calculate the arithmetic means.
• 12/9+52/8+40/7+58/6+22/5+38/4+8/3=39.78

• Considering that you’re using the macro table!

Eight-Puzzle

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• How can we construct a macro table?
• The most efficient way is using DFS or BFS.
• Starting from each goal state to every other states.

• Depending on the problem the search effort can be important.

Eight-Puzzle

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Humans can navigate through large state spaces due to an ability to use meta-
level reasoning.

• Meta-level strategy (reasoning) distinguish between relevant and irrelevant
actions.
• Divide a problem into several subgoals, then solve the subgoals one after the other.

• Standard search algorithm like A* always consider all possible moves available.

Relevance Cuts

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Example:
• In mirror-symmetrical Sokoban.
• It is obvious that each half can be solved independently.
• Algorithm like A* will explore strategy that humans would never consider.

• Switching back and forth between the two subproblems.

Relevance Cuts

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Relevance cuts:
• Attempt to restrict the way the algorithm chooses the next action.
• The idea is to prevent the program from trying all possible move sequences.
• It introduces the notion of influence.

• Moves that don’t influence each other are called distant moves.

Relevance Cuts

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• A move can be cut off:
• If within the last 𝑚 moves more than 𝑘 distant moves were made.

• This cut will discourage arbitrary switches between non-related areas of the maze.
• Or a move that is distant with respect to the previous move, but not distant to a move in the

past 𝑚 moves.
• This will not allow switches back into an area previously worked on and abandoned just briefly.

Relevance Cuts

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• The definition of distant moves depends on the problem domain.

• For the Sokoban:
• Create a measure for influence.
• Compute a table for the influence of each square on each other.
• The influence relation reflects the number of paths between the squares.

• The more alternatives exists, the less influence.

Relevance Cuts

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• In this example:
• 𝑎 and 𝑏 influence each other less than 𝑐 and 𝑑.

• Squares on the optimal place should have a stronger influence than others.
• 𝑎 influences 𝑐 more than 𝑐 influences 𝑎.

• Neighboring squares that are connected by a possible ball push are more influencing than if only
the man can move between them

Relevance Cuts

a

c

b

d

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Given an influence table, a move M2 is regarded as distant from a previous move M1, if its from-
square influences M1’s from-square by less than some threshold, 𝜃.

Relevance cuts

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Macro problem solving prunes actions in favor of a few action sequences (called macros), which
not only decreases the branching factor but also the search depth.
• We applied it on the Eight-Puzzle where the macros bring one tile after the other into place without

disturbing the tiles in the correct position.

• Relevance cuts prune actions in a state that are considered unimportant because they do not
contribute to the subgoal currently pursued.
• Actions that do not influence each other are called distant actions.
• Relevance cuts can prune an action if more than a certain number of distant actions have been

executed recently
• We used Sokoban to illustrate relevance cuts.

Nonadmissible State Space Pruning

D R . J E A N - A L E X I S D E L A M E R - S T F X U N I V E R S I T Y

