St. Francis Xavier UNIVERSITY

CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 13 - StATE SPACE PRUNING (CONTINUED)

Dr. Jean-Alexis Delamer

Recap

- Pruning is a technique to ignore parts of the search tree (and thus reduce the branching factor) to save runtime and memory.
- Pruning requires runtime and memory. We need to ensure that the costs are outweighed by the corresponding savings.
- Pruning exploit the expert knowledge of the domain.
- Regularities.
- The pruning can be static or dynamic.

State Space Pruning

- Static and dynamic pruning give optimal solutions.
- The pruning algorithm needs to verify before pruning that the branch is not leading to an optimal solution.
- In large state space, pruning techniques does not reduce the time complexity enough.

What can we do?

Nonadmissible State Space Pruning

- We can sacrifice the optimality of the solution.
- Sometimes a good, but quick solution is better.
- Example (GPS).
- On small distances, you can calculate the optimal solution very fast.
- But calculating the optimal path between Antigonish and San Francisco can be very long.
- However, you only want a good solution not the optimal.
- What is 1 hour on a 3 -day travel.

Nonadmissible State Space Pruning

- The pruning technique that sacrifice the optimality are nonadmissible.
- We will see two techniques:
- Macro problem solving
- Relevance cut

Macro Problem Solving

- The idea is to group a sequence of actions into a new action.
- Ex: $4 x$ turn 90° can be grouped into turn 360°
- The problem solver (algorithm) can apply multiple primitive operators at once.
- Where is the pruning?
- Requires fewer decisions.
- Choices inside a branch are ignored.

Macro Problem Solving

- Is there a catch?
- If the substitutions operators are too generous (grouping to many primitive operators) the goal might not be found.
- We need to ensure that the goal is still reachable.

Macro Problem Solving

- Definition (Macro Operator):
- A macro operator (macro) is a fixed sequence of elementary operators executed together.
- For a problem graph with node set V and an edge set E.
- A macro refers to an additional edge $e=(u, v)$ in $V \times V$ for which there are edges $e_{1}=$ $\left(u_{1}, v_{1}\right), \ldots, e_{k}=\left(u_{k}, v_{k}\right) \in E$ with $u=u_{1}, v=v_{k}$ and $v_{i}=u_{i+1}$ for all $1 \leq i \leq k-1$.
- In other words, the path $\left(u_{1}, \ldots, u_{k}, v_{k}\right)$ between u and v is shortcut by introducing e.

Macro Problem Solving

- Macros turn an unweighted graph into a weighted graph.
- Why?
- Macros can have different lengths.
- We need to know the weight of a macro to find the best solution.
- The weight of the macro is the accumulated weight of the original edges:
- $w(u, v)=\sum_{i=1}^{k} w\left(u_{i}, v_{i}\right)$

Macro Problem Solving

- Inserting edges does not affect the reachability status of nodes.
- If there is no alternative in the choice of successors.
- $\operatorname{Succ}\left(u_{i}\right)=\left\{v_{i}\right\}$
- Macros can substitute the original edges without loss of information.
- Example:
- Maze areas with width of one (tunnel).

Macro Problem Solving

- If there are more paths between a node?
- To preserve the optimality of an underlying search algorithm.
- We take the shortest path $w(u, v)=\delta(u, v)$.
- These macros are called admissible.

Macro Problem Solving

- How can we create the macros?
- The All-Pairs Shortest Paths algorithm of Floyd-Warshall is one way.
- At the end of the algorithm, all two nodes are connected.
- The original edges are no longer needed to determine the shortest path.
- It keeps the optimality of the search.
- So we can find the optimal solution with macros?

Macro Problem Solving

- True, for small problems.
- For larger problems computing All-Pairs Shortest Paths is infeasible.
- If we accept feasible solutions:
- We can use inadmissible macros.
- Delete edges after some admissible macros have been introduced.
- The importance of macros is that they can be determined before the search.
- It's called Macro learning.

Macro Problem Solving

- How to use inadmissible macros:
- Inserting them with a weight $w(u, v)$ smaller than the optimum $\delta(u, v)$.
- The macros will be used with higher priority.
- Or we can restrict the search to macros only.
- Only possible if the goal stay reachable.
- Creating inadmissible macros depends on the problem.

Macro Problem Solving

- Example:
- We decompose the problem in subgoals.
- For each subgoals a set of macros is defined that transform a state into the next subgoal.

Eight-Puzzle

- Actions are labeled by the direction in which the blank is moving.
- We create a table:
- The entry in row r and in the column c contains a macro.
- The macro is the sequence to position the tile in position r to the position c.
- After execution the tiles in position 1 to $r-1$ remain correctly placed.

6	1	3
8	4	7
2	5	

Starting state

1	2	3
8		4
7	6	5

Goal state

Eight-Puzzle

	0	1	2	3	4	5	6
0							
1	DR						
2	D	LURD					
3	DL	URDL LURD	URDL				
4	L	RULD LURD	RULD	LURRD LULDR			
5	UL	DRUL DLUR ULDR	RDLU RULD	RULD RDLU URDL	RDLU		
6	U	DLUR ULDR	DRUULD	$\begin{aligned} & \text { DLUU } \\ & \text { RDRU } \\ & \text { LLDR } \end{aligned}$	DRUL	LURRD DLURU LLDR	
7	UR	LDRU ULDR	ULDDR ULURD	LDRUL URDRU LLDR	DLUR DRUL	DRULDL URRDLU	DLUR
8	R	ULDR	LDRR UULD	LURDR ULLDR	LDRRUL	$\begin{aligned} & \text { DRUL } \\ & \text { LDRU } \\ & \text { RDLU } \end{aligned}$	LDRU

6	1	3				
8	4	7				
2	5		$\quad \longrightarrow$	6	1	3
:---	:---	:---				
8	4					
2	5	7	$\quad \longrightarrow$	6	1	3
:---	:---	:---				
8		4				
2	5	7				

$\mathrm{c}=0, \mathrm{r}=5$

1	2	3
8		4
7	6	5

Goal state

Eight-Puzzle

	0	1	2	3	4	5	6
0							
1	DR						
2	D	LURD					
3	DL	URDL LURD	URDL				
4	L	RULD LURD	RULD	LURRD LULDR			
5	UL	DRUL DLUR ULDR	RDLU RULD	RULD RDLU URDL	RDLU		
6	U	DLUR ULDR	DRUULD	DLUU RDRU LLDR	DRUL	LURRD DLURU LLDR	
7	UR	LDRU ULDR	ULDDR ULURD	LDRUL URDRU LLDR	DLUR DRUL	DRULDL URRDLU	DLUR
8	R	ULDR	LDRR UULD	LURDR ULLDR	LDRRUL	DRUL LDRU RDLU	LDRU

The tiles in the correct position didn't move.

1	8	3
6		4
2	5	7

1	2	3
8		4
7	6	5

Eight-Puzzle

	0	1	2	3	4	5	6
0							
1	DR						
2	D	LURD					
3	DL	URDL LURD	URDL				
4	L	$\begin{aligned} & \text { RULD } \\ & \text { LURD } \end{aligned}$	RULD	LURRD LULDR			
5	UL	DRUL DLUR ULDR	RDLU RULD	RULD RDLU URDL	RDLU		
6	U	$\begin{aligned} & \text { DLUR } \\ & \text { ULDR } \end{aligned}$	DRUULD	DLUU RDRU LLDR	DRUL	LURRD DLURU LLDR	
7	UR	$\begin{aligned} & \text { LDRU } \\ & \text { ULDR } \end{aligned}$	ULDDR ULURD	LDRUL URDRU LLDR	DLUR DRUL	DRULDL URRDLU	DLUR
8	R	ULDR	LDRR UULD	LURDR ULLDR	LDRRUL	DRUL LDRU RDLU	LDRU

1	8	3		1			3			1	3		6	1	3
6		4	\vec{U}	6	8		4	L	6	8	4	D		8	4
2	5	7		2	5		7		2	5			2	5	7
$\mathrm{c}=2, \mathrm{r}=7$													D		
6	1	3		6	1		3		6	1	3		6	1	3
	2	4	L	2			4	U	2	8	4	R	2	8	4
5	8	7		5	8		7		5					5	7
U \downarrow															
	1	3		1			3		1	2					
6	2	4	R	6	2		4	D	6		4				
5	8	7		5	8		7		5	8					

Eight-Puzzle

	0	1	2	3	4	5	6
0							
1	DR						
2	D	LURD					
3	DL	URDL LURD	URDL				
4	L	RULD LURD	RULD	LURRD LULDR			
5	UL	DRUL DLUR ULDR	RDLU RULD	RULD RDLU URDL	RDLU		
6	u	DLUR ULDR	DRUULD	DLUU RDRU LLDR	DRUL	LURRD DLURU LLDR	
7	UR	LDRU ULDR	ULDDR ULURD	LDRUL URDRU LLDR	DLUR DRUL	DRULDL URRDLU	DLUR
8	R	ULDR	LDRR UULD	LURDR ULLDR	LDRRUL	DRUL LDRU RDLU	LDRU

1	2	3
6		4
5	8	7

The tiles 3 and 4 are in the correct positions. We can skip it.

Eight-Puzzle

Eight-Puzzle

	0	1	2	3	4	5	6							
0											$\xrightarrow{\text { DLUR }}$			
1	DR													
2	D	LURD	URDL					1	2	3		1	2	3
3	DL	URDL LURD						7		4		8		4
4	L	$\begin{aligned} & \text { RULD } \\ & \text { LURD } \end{aligned}$	RULD	LURRD LULDR				6	8	5		7	6	5
5	UL	DRUL DLUR ULDR	$\begin{aligned} & \text { RDLU } \\ & \text { RULD } \end{aligned}$	RULD RDLU URDL	RDLU			$c=6, r=7$				It's done.		
6	U	DLUR ULDR	DRUULD	DLUU RDRU LLDR	DRUL	LURRD DLURU LLDR								
7	UR	LDRU ULDR	ULDDR ULURD	LDRUL URDRU LLDR	DLUR DRUL	DRULDL URRDLU	DLUR				Was it optimal?			
8	R	ULDR	LDRR UULD	LURDR ULLDR	LDRRUL	DRUL LDRU RDU	LDRU							

Eight-Puzzle

- In the worst-case scenario:
- We sum the string size maxima in the columns.
- $2+12+10+14+8+14+4=64$
- The average solution length:
- We calculate the arithmetic means.
- $12 / 9+52 / 8+40 / 7+58 / 6+22 / 5+38 / 4+8 / 3=39.78$
- Considering that you're using the macro table!

	0	1	2	3	4	5	6
0							
1	DR						
2	D	LURD					
3	DL	URDL LURD	URDL				
4	L	$\begin{aligned} & \text { RULD } \\ & \text { LURD } \end{aligned}$	RULD	LURRD LULDR			
5	UL	DRUL DLUR ULDR	RDLU RULD	RULD RDLU URDL	RDLU		
6	U	DLUR ULDR	DRUULD	DLUU RDRU LLDR	DRUL	LURRD DLURU LLDR	
7	UR	LDRU ULDR	ULDDR ULURD	LDRUL URDRU LLDR	DLUR DRUL	DRULDL URRDLU	DLUR
8	R	ULDR	LDRR UULD	LURDR ULLDR	LDRRUL	DRUL LDRU RDLU	LDRU

Eight-Puzzle

- How can we construct a macro table?
- The most efficient way is using DFS or BFS.
- Starting from each goal state to every other states.
- Depending on the problem the search effort can be important.

Relevance Cuts

- Humans can navigate through large state spaces due to an ability to use metalevel reasoning.
- Meta-level strategy (reasoning) distinguish between relevant and irrelevant actions.
- Divide a problem into several subgoals, then solve the subgoals one after the other.
- Standard search algorithm like A* always consider all possible moves available.

Relevance Cuts

- Example:
- In mirror-symmetrical Sokoban.
- It is obvious that each half can be solved independently.
- Algorithm like A* will explore strategy that humans would never consider.
- Switching back and forth between the two subproblems.

Relevance Cuts

- Relevance cuts:
- Attempt to restrict the way the algorithm chooses the next action.
- The idea is to prevent the program from trying all possible move sequences.
- It introduces the notion of influence.
- Moves that don't influence each other are called distant moves.

Relevance Cuts

- A move can be cut off:
- If within the last m moves more than k distant moves were made.
- This cut will discourage arbitrary switches between non-related areas of the maze.
- Or a move that is distant with respect to the previous move, but not distant to a move in the past m moves.
- This will not allow switches back into an area previously worked on and abandoned just briefly.

Relevance Cuts

- The definition of distant moves depends on the problem domain.
- For the Sokoban:
- Create a measure for influence.
- Compute a table for the influence of each square on each other.
- The influence relation reflects the number of paths between the squares. - The more alternatives exists, the less influence.

Relevance Cuts

- In this example:
- a and b influence each other less than c and d.
- Squares on the optimal place should have a stronger influence than others.
- a influences c more than c influences a.
- Neighboring squares that are connected by a possible ball push are more influencing than if only the man can move between them

Relevance cuts

- Given an influence table, a move M2 is regarded as distant from a previous move M1, if its fromsquare influences M 1 's from-square by less than some threshold, θ.

Nonadmissible State Space Pruning

- Macro problem solving prunes actions in favor of a few action sequences (called macros), which not only decreases the branching factor but also the search depth.
- We applied it on the Eight-Puzzle where the macros bring one tile after the other into place without disturbing the tiles in the correct position.
- Relevance cuts prune actions in a state that are considered unimportant because they do not contribute to the subgoal currently pursued.
- Actions that do not influence each other are called distant actions.
- Relevance cuts can prune an action if more than a certain number of distant actions have been executed recently
- We used Sokoban to illustrate relevance cuts.

