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Recap

* Pruningis a technique to ignore parts of the search tree (and thus reduce the
branching factor) to save runtime and memory.

* Pruning requires runtime and memory. We need to ensure that the costs are
outweighed by the corresponding savings.

* Pruning exploit the
e Regularities.

* The pruning can be
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State Space Pruning

 Static and dynamic pruning give optimal solutions.

* The pruning algorithm needs to verify that the branch is not
leading to an optimal solution.

* |n large state space, pruning techniques does not reduce the time complexity
enough.
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Nonadmissible State Space Pruning

* We can sacrifice the optimality of the solution.
* Sometimes a good, but quick solution is better.

 Example (GPS).
* On small distances, you can calculate the optimal solution very fast.
e But calculating the optimal path between Antigonish and San Francisco can be very long.

 However, you only want a good solution not the optimal.
* Whatis 1 hour on a 3-day travel.
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Nonadmissible State Space Pruning

* The pruning technique that sacrifice the optimality are nonadmissible.

 We will see two techniques:
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Macro Problem Solving

* Theideais to group a sequence of actions into a new action.
* Ex: can be grouped into

* The problem solver (algorithm) can apply multiple at once.

* Where is the pruning?
* Requires fewer decisions.
e Choices inside a branch are ignored.
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Macro Problem Solving

e |sthere a catch?

 If the substitutions operators are too generous (grouping to many primitive operators) the
goal might not be found.

e We need to ensure that the
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Macro Problem Solving

e Definition (Macro Operator):
A macro operator (macro) is a fixed sequence of elementary operators executed together.
* For a problem graph with node set VV and an edge set E.
* A macro refers to an additional edge e = (u, v) in VXV for which there are edges e; =
(Ug, v1), ..o, € = (Ug, V) € E withu = uq, v =vandv; = u;qforalll <i <k -—1.
* In other words, the path (u4, ..., ug, v,) between u and v is shortcut by
introducing e.

w O W W
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Macro Problem Solving

* Macros turn an unweighted graph into a weighted graph.

e Why?
* Macros can have different lengths.
* We need to know the weight of a macro to find the

* The weight of the macro is the accumulated weight of the original edges:

e w(u,v) = {-‘zlw(ui,vi)
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Macro Problem Solving

* |nserting edges status of nodes.

* |f there is no alternative in the choice of successors.
* Succ(yy) = {v;}
* Macros can substitute the original edges without loss of information.

 Example:
* Maze areas with width of one (tunnel).
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Macro Problem Solving

* |f there are more paths between a node?

* To preserve the optimality of an
* We take the shortest path w(u, v) = §(u, v).

e These macros are called admissible.
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Macro Problem Solving

e How can we create the macros?
* The All-Pairs Shortest Paths algorithm of Floyd-Warshall is one way.
* At the end of the algorithm, all two nodes are connected.
* The original edges are no longer needed to determine the shortest path.

* It keeps the optimality of the search.

* So we can find the optimal solution with macros?

DR. JEAN-ALEXIS DELAMER - STFX UNIVERSITY ﬁ



Macro Problem Solving

* True, for small problems.
e For larger problems computing All-Pairs Shortest Paths is infeasible.

* |f we accept feasible solutions:

* We can use
* Delete edges after some admissible macros have been introduced.

* The importance of macros is that they can be determined before the search.

* It’s called Macro learning.
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Macro Problem Solving

* How to use
* Inserting them with a weight w(u, v) smaller than the optimum & (u, v) .
e The macros will be used with higher priority.
* Or we can restrict the search to macros only.
* Only possible if the goal stay reachable.

* Creating inadmissible macros depends on the problem.
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Macro Problem Solving

 We decompose the problem in subgoals.
* For each subgoals a set of macros is defined that transform a state into the next subgoal.
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Eight-Puzzle

e Actions are labeled by the direction in

* We create a table:
* The entry in row r and in the column ¢ contains a macro.
 The macro is the sequence to position the tile in position r to the position c.
» After execution the tiles in position 1 to 7 — 1 remain correctly placed.

13 1123
417 8 4
5 7,65
Starting state Goal state
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Eight-Puzzle

0
0
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5 J UL
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8 'R
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ULDR

DLUR
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LDRU
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URDL

RULD

RDLU
RULD
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ULDDR
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LDRR
UULD
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Eight-Puzzle
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Eight-Puzzle
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LURD

URDL
LURD

RULD
LURD

DRUL
DLUR
ULDR

DLUR
ULDR

LDRU
ULDR

ULDR

URDL

RULD
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RULD

DRUULD

ULDDR
ULURD

LDRR
UULD

3 4 5 6 2 3
6 4 The tiles 3 and 4 are in the correct positions.
g |7 We can skip it.
LURRD
LULDR
RULD RDLU
RDLU
URDL
DLUU DRUL LURRD
RDRU DLURU
LLDR LLDR
LDRUL DLUR DRULDL DLUR
URDRU DRUL URRDLU
LLDR
LURDR LDRRUL DRUL LDRU
ULLDR LDRU
RDLU
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Eight-Puzzle
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Eight-Puzzle
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Eight-Puzzle

* |In the worst-case scenario: . 2 2 i ? £
> L 0
* We sum the string size maxima in the columns. o i
e 2+12+10+14+8+14+4=64 2 D LURD
. 3 DL URDL URDL
* The average solution length: LURD
* We calculate the arithmetic means. ot ﬁ;’;ﬁ oD tﬂﬁ;‘g
* 12/9+52/8+40/7+58/6+22/5+38/4+8/3=39.78 5 UL DRUL RDLU  RULD  RDLU
DLUR RULD RDLU
ULDR URDL
6 U DLUR DRUULD DLUU DRUL LURRD
ULDR RDRU DLURU
LLDR LLDR

7 UR LDRU ULDDR LDRUL DLUR  DRULDL DLUR
ULDR ULURD URDRU DRUL  URRDLU

LLDR
8 R ULDR LDRR LURDR LDRRUL DRUL  LDRU
UuULD ULLDR LDRU
RDLU
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Eight-Puzzle

* How can we construct a macro table?
* The most efficient way is using
e Starting from each goal state to every other states.

* Depending on the problem the search effort can be important.
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Relevance Cuts

* Humans can navigate through large state spaces due to an ability to use meta-
level reasoning.

* Meta-level strategy (reasoning) distinguish between relevant and irrelevant

actions.
, then solve the

* Standard search algorithm like A*
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Relevance Cuts

* Example:
* In mirror-symmetrical Sokoban.
* |t is obvious that each half can be

* Algorithm like A* will explore strategy that humans would never consider.
* Switching back and forth between the two subproblem:s.
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Relevance Cuts

* Relevance cuts:
e Attempt to restrict the way the algorithm chooses the next action.
* The idea is to prevent the program from trying all possible move sequences.
* Itintroduces the notion of

e Moves that don’t influence each other are called
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Relevance Cuts

e A move can be cut off:

* If within were made.
e This cut will discourage arbitrary switches between non-related areas of the maze.
* Or a move thatis

* This will not allow switches back into an area previously worked on and abandoned just briefly.
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Relevance Cuts

e The definition of distant moves

 For the Sokoban:

* Createa
for the influence of each square on each other.

 The influence relation reflects the
* The more alternatives exists, the less influence.
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Relevance Cuts

* |n this example:
* a and b influence each other less than ¢ and d.
e Squares on the optimal place should have a stronger influence than others.
* a influences ¢ more than c influences a.

* Neighboring squares that are connected by a possible ball push are more influencing than if only
the man can move between them

@ ®
& @
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Relevance cuts

e Given an influence table, a move M2 is regarded as distant from a previous move M1, if its from-
square influences M1’s from-square by less than some threshold, 6.
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Nonadmissible State Space Pruning

* Macro problem solving prunes actions in favor of a few action sequences (called macros), which
not only
 We applied it on the Eight-Puzzle where the macros bring one tile after the other into place without
disturbing the tiles in the correct position.

* Relevance cuts prune actions in a state that are considered unimportant because they do not
contribute to the subgoal currently pursued.

e Actions that do not influence each other are called distant actions.

* Relevance cuts can prune an action if more than a certain number of distant actions have been
executed recently

 We used Sokoban to illustrate relevance cuts.
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